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SUMMARY

This paper describes a technique for achieving accurate numerical simulations of advective transport at large
Courant numbers using large time steps. The scheme is called ULTIMATE DISCUS and it implements
Leonard’s universal flux limiter and QUICKEST algorithms within a semi-Lagrangian treatment of advection.
This enables the scheme to achieve monotonic solutions, mass conservation and, most importantly, high
accuracy without any limit on the time step (or Courant number).

The results of numerical experiments of advection over a fixed distance show that the accuracy of the method
increases with increasing spatial resolution and generally increases (but in a non-trivial manner) with increasing
Courant number. Accuracy is exact at all integer values of Courant number; for Courant numbers increasing
between zero and one, accuracy improves rapidly and monotonically; for other integer–integer ranges of Courant
number there is a minimum of accuracy close to the mid-range value. This behaviour is explained in terms of the
known accuracy of the QUICKSET algorithm as a function of Courant number and the reducing number of
interpolative steps required in the simulations as the Courant number increases. The use of the flux limiter is
shown to remove non-physical oscillations from the solution, but at the price of a few per cent reduction in global
accuracy caused by increased suppression of peak values.
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INTRODUCTION

This paper focuses on the modelling of pure advection at high Courant numbers using what could best
be described as a hybrid scheme, in the sense that it combines the advantages of three basic
techniques which have been available for many years in more than one area of computational fluid
dynamics (CFD). Although the authors’ application area is concerned with pollutant transport in
rivers and coastal waters, the methods described here will find application in other areas of CFD,
since the difficulties of accurately modelling advection-dominated flows are all pervasive throughout
the CFD community.

The numerical scheme to be described is called ULTIMATE DISCUS and it includes elements
from the method of characteristics, control volume discretization and flux limiting. The original non-
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flux-limiting version of the method, DISCUS (Domain of Influence Search for Convective
Unconditional Stability), was recently reported.1 That paper showed the potential of the basic method
for accurate advection calculations at Courant numbers greater than one, but excluded detailed
background information. Without the flux limiter, solutions from the scheme developed wiggles
(unphysical grid-scale oscillations) in areas of rapid changes in gradient of the advected variable, as
would be expected. Inclusion of the flux limiter eliminates the wiggles, but there is a price to pay.

ULTIMATE DISCUS is closely related to the so-called Eulerian–Lagrangian or semi-Lagrangian
schemes which have been appearing in the literature for some years and is essentially the same as the
flux-based modified method of characteristics (FBMMOC) advocated by Roache,2 the main
difference being the use of Leonard’s QUICKEST scheme3 together with his universal flux limiter4,5

instead of van Leer’s MUSCL algorithm.6

The essential ingredients of semi-Lagrangian advection calculations7 are that the advected variable
is tracked along characteristics (fluid trajectories) and results are obtained on a regular mesh by
following only those characteristics which terminate at the mesh grid points. Since in general the
characteristics do not begin at mesh grid points, some interpolation of the advected variable is
required. The strength of the method lies in its unconditional stability at all Courant numbers; its
weaknesses are that mass conservation and monotonic profiles are not guaranteed. These can be
remedied, however, by casting the scheme in a conservative flux-based form2 and implementing a
shape-preserving algorithm. Usually the latter works by automatically limiting the calculations (using
monotonicity-based constraints),4 but recent work8 shows that the same effect can be achieved by
using a shape-preserving integral reconstruction technique when interpolating the advected variable.

In common with previous work by the authors,9 the paper presents practical accuracy norms for the
scheme, which illustrate the way in which its accuracy depends on spatial resolution and Courant
number. The significant divergence from previously accepted wisdom allowed by schemes such as
DISCUS, which benefit from acknowledging the physical nature of advection, is that accuracy tends
to increase as the time step increases. Moreover, there is no limit to the magnitude of the time step.
These are important features and indicate crucial advantages over Eulerian schemes which are limited
to relatively small time steps either on stability grounds (so-called explicit schemes) or an accuracy
grounds (so-called implicit schemes). Hence the computing time required by DISCUS for extensive
advection simulations is greatly reduced. Moreover, use of a conservative control volume
discretization ensures mass conservation. For many years it has been the accuracy of the modelling
of advection which has restricted the development of numerical models of pollutant transport and
water quality in rivers, estuaries and coastal regions. The advent of schemes like DISCUS suggests it
will be the commonly used second-order-accurate modelling of the diffusion terms which will be the
limiting factor in the future.

The aims of the paper, therefore are (a) to present a derivation of the DISCUS algorithm, (b) to
describe the inclusion of a flux limiter (i.e. the ULTIMATE DISCUS scheme) and (c) to present and
interpret results from numerical simulations of the original and flux-limited algorithms for a range of
spatial resolutions and Courant numbers. Throughout, we limit the discussion to the case of one-
dimensional pure advection under a steady, spatially uniform velocity field solved on a uniform
computational grid. The authors are currently extending the method for use in more complex and
arguably more practically useful situations, such as non-uniform velocity fields and in the presence of
physical diffusion. To paraphrase Leonard (one of the pioneers in advection modelling), however, it
is pointless to complicate the issues before we have demonstrated that we can adequately solve
simple linear advection problems, a significant embarrassment of many codes being that they are
unable to resolve unsteady, one-dimensional advection at constant velocity with an acceptable
accuracy.
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THE DISCUS AND ULTIMATE DISCUS ALGORITHMS

One-dimensional pure advection is described by the equation

@C=@t � @�UC�=@x � 0; �1�

whereU is the advecting velocity,C is the advected variable,t is time andx is the spatial co-ordinate.
Figure 1shows the space–time computational plane used for the numerical solution of equation

(1), assuming a positive velocity field acting to the right. It is assumed that all values ofC are known
at the grid points at the present time level (n) and we wish to calculate all the values ofC at the grid
points at the future time level (n � 1). The broken line is a characteristic along which information
propagates across the computational plane. Moreover, the advected variable is constant along a
characteristic and its slope is the reciprocal of the velocity. Because of the uniform velocity field, all
the characteristics are parallel. Focusing on just grid pointi, it is evident that

C�i; n � 1� � C� f ; n�; �2�

where f is the foot of the characteristic which terminates at grid pointi at the future time level.
Equation (2) is the essential ingredient of a semi-Lagrangian scheme and it ensures that the transfer of
information is in sympathy with the physical process of advection. Clearly, becausef does not
coincide with a grid point, recourse to interpolation is necessary in the evaluation ofC�f ; n�. The
accuracy of any such characteristic-based numerical scheme is crucially dependent on the
interpolation method used.

It is easy to show, but perhaps not well known, that the Courant number may be evaluated from the
slope of the characteristic,

slope of characteristic � 1=U ; �3a�

and from Figure 1,

slope of characteristic � �t=�1 � ���x: �3b�

Combining these two equations gives

Courant number N1 � U�t=�x � 1 � �: �4�

It should be clear thata is a fractional distance step and that it takes values between zero and one. It
can also be interpreted as a fractional Courant number; other workers use the term remnant Courant
number.8 Figure 1, therefore, only applies for Courant numbers between one and two, but the
extension to other Courant number ranges is straightforward.

Figure 1. Space–time computational plane
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Consider nowFigure 2, which shows part of the computational plane in greater detail. In particular
the time step has been split such that the characteristic terminating at grid pointi passes through grid
point i ÿ 1 at the fractional time stept. In the ULTIMATE DISCUS scheme the evaluation of
C�i; n � 1� is undertaken as a three-step procedure: firstly, a control volume discretization over the
partial time step��t to evaluateC�i ÿ 1; n � ��; secondly, the application of a flux limiter to this
evaluation; thirdly, point-to-point transfer of the flux-limited value ofC along the characteristic for
the partial time step�1 ÿ ���t. In the simpler DISCUS algorithm the flux limiter is omitted.

Step 1

With regard to Figure 2,L andR indicate the location of the left-hand (LH) and right-hand (RH)
faces of the control volume centred about grid pointi ÿ 1. The usual conservative control-volume-
based discretization of equation (1) is given by

C�i ÿ 1; n � �� ÿ C�i ÿ 1; n� �
��t

�x
�F�L; n� ÿ F�R; n��; �5�

whereF represents the flux of the advected variable�� UC� at the control volume face. Strictly, the
terms on the left-hand side (LHS) of equation (5) are control volume average values rather than nodal
values and the fluxes on the right-hand side (RHS) are time step average values. Leonard4 discusses
the implications of this and shows that in the uniform velocity case equation (5) is valid if the face
values are defined appropriately.

An alternative way of writing equation (5) is

C�i ÿ 1; n � �� ÿ C�i ÿ 1; n� �
1
�x

�
~F�L� ÿ ~F�R��; �6�

where ~F is a time-integrated flux. The RHS of equation (5) or (6) simply represents the difference in
mass of the advected variable entering and leaving the control volume during the partial time step.
The time-integrated flux terms are written more formally as

~F�L� �

�t���t

t
F�L� dT ;

~F�R� �

�t���t

t
F�R� dT ; �7a; b�

whereT is a dummy time variable used solely to undertake the integration. In principle the integrals
in equations (7a) and (7b) can be evaluated using any numerical integration technique.

Figure 3shows an expanded view of the lower partial time step shown in Figure 2 and allows a
physical explanation of the time-integrated fluxes to be appreciated. With reference to the LH face,
the foot (g) of the broken characteristic tracked back from the LH face at timen � � indicates the
extent of the spatial domain from which the time-integrated flux should be calculated. Any part of the

Figure 2. Detail of computational plane around grid pointi ÿ 1
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spatial profile ofC further upstream of (to the left of)g at timen will not pass through the control
volume’s LH face during the partial time step. Equally, any part of the spatial profile ofC further
downstream ofL at timen cannot influence the flux through the LH face, since it has already passed
through it. Hence we could replace the time integrals of flux (equations (7a) and (7b)) with the
following spatial integrals ofC (the velocity cancelling andX being a dummy spatial integration
variable):

~F�L� �

�L

g
C dX ; ~F�R� �

�R

h
C dX : �8a; b�

Roache2 recommends approximating the time integrals in terms of the fluxes passing through the
control volume faces at the centre of the partial time step, i.e. as the product of the value ofC at the
foot of the characteristic (shown as a bold line in Figure 3) terminating at the face at timen � �=2, the
velocity and the partial time step. Hence

~F�L� � C�'L; n�U��t; ~F�R� � C�'R; n�U��t: �9a; b�

Clearly, these reduce to approximations of the spatial integrals by replacing the productU��t by
��x. Hence equation (6) may be written as

C�i ÿ 1; n � �� ÿ C�i ÿ 1; n� � ��C�'L; n� ÿ C�'R; n��: �10�

Note that the adoption of Roache’s approximation implies a linear variation inC over the distance
��x, i.e. second-order accuracy. From a consideration of the slope of the characteristics it is evident
thata is simply the Courant number associated with the calculation described by equation (10) and is
defined as

� � U��t=�x: �11�

In view of equation (4), which defines the Courant numberN1 for the complete time step, it is
possible, and indeed more convenient, to regarda as a fractional Courant number given by (for the
particular case under consideration)

� � N1 ÿ 1: �12�

It is easy to show that equations (11) and (12) are consistent with each other. Note thata can also be
interpreted as an interpolation parameter used in evaluatingC�'L; n� and C�'R; n� from the grid
point values ofC.

Figure 3. Expanded view of computational plane for control volume centred at grid pointi ÿ 1
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Numerous methods are available for estimatingC�'L; n� andC�'R; n�. Undoubtedly, one of the
best schemes is Leonard’s QUICKEST algorithm.3,4 This scheme gives a time step average estimate
for the face values of the advected variable (i.e. exactly what we require, although it is probably not
always appreciated that the QUICKEST estimates are indeed equivalent toC�'L; n� andC�'R; n��
and is of third-order accuracy in time and space while remaining computationally efficient. Recent
work9,10 confirms the promise of the scheme and it is also recommended by Roache as a likely
alternative to the combined upstream and Lax–Wendroff method used in his FBMMOC method.
Interestingly, the scheme has been derived in a number of different ways4,11–13 to that originally
given by Leonard.3 As a final note, it is well known3 that exactly the same algebraic expression for
C(i7 1, n� t) would be obtained if it were calculated from upstream-biased cubic interpolation at
time leveln followed by point-to-point transfer along the characteristic terminating at grid pointi ÿ 1
at time leveln � �. The difference in philosophy between the two approaches, however, is not merely
numerical semantics, because only by using a control volume discretization can the next step of the
scheme be implemented.2

Step 2

A number of workers2,4,10 discuss the performance of flux limiters for suppressing unphysical
oscillations (wiggles) generated in areas of rapid changes in gradient of the advected variable. Van
Leer’s MUSCL scheme and Leonard’s ULTIMATE scheme appear to have the edge and we have
adopted the latter. The reader is recommended to consult Reference 4 for details of the method.
Briefly, however, the method applies constraints to a calculated control volume face value of the
advected variable such that values which would cause non-monotonicity are replaced with ones
which preserve monotonicity. It should be recognized that flux limiters are not a universal panacea:
yes, they remove unphysical oscillations from numerical results, but they can also have side-effects,
resulting in profiles of the advected variable becoming distorted in a variety of ways. When
ULTIMATE is combined with QUICKEST, the effects are reminiscent of the presence of excessive
numerical diffusion with peak values being attenuated and profile widths being artificially increased
(this is illustrated in the results shown later).

Leonard4 and Leonard and Niknafs5 describe a method for increasing the accuracy of the basic
ULTIMATE QUICKEST scheme in regions of physical extrema while retaining the suppression of
wiggles in the vicinity of rapid changes in gradient of the advected variable. By using a high enough
order of accuracy approximation of the control volume face values, the resulting adaptive algorithm
reduces numerical diffusion to minimal levels and offers the prospect of very accurate simulations at
Courant numbers less than one. After consulting the next section, readers will see that the
incorporation of this refinement within ULTIMATE DISCUS would extend this promise to all
Courant numbers. We have refrained from doing this here, however, since we wish first to illustrate
the enhanced accuracy obtainable by using ULTIMATE DISCUS as opposed to using ULTIMATE
QUICKEST, i.e. by extending the use of the basic third-order-accurate scheme for use with large time
steps.

Step 3

With reference to Figure 2 it is clear that point-to-point transfer along the characteristic for the
upper partial time step gives

C�i; n � 1� � C�i ÿ 1; n � ��: �13�
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Combining the above steps into a single-stage algorithm gives the ULTIMATE DISCUS scheme for
Courant numbers between one and two as

C�i; n � 1� � C�i ÿ 1; n� � ��C�L; *� ÿ C�R; *��; �14�

where an asterisk indicates flux-limited, time step average values ofC evaluated using the
ULTIMATE QUICKEST scheme. The scheme is easily generalized to any Courant number, since all
that this alters is the location of the cell for which the control volume discretization is required: the
larger the Courant number, the further upstream this cell is located. Roache2 refers to this cell as the
core cell. In all cases the fractional Courant number lies between zero and one. Indeed, when it equals
zero or one, i.e. when the Courant number for the complete time step is an integer, the scheme gives
exact point-to-point transfer. Hence the general ULTIMATE DISCUS scheme is

C�i; n � 1� � C�i ÿ p; n� � ��C�i ÿ p ÿ
1
2 ; *� ÿ C�i ÿ p �

1
2 ; *��; �15�

wherep(� INT(N1)) is the truncated integer value of the Courant numberN1 and� � N1 ÿ p. The
use of1

2 in the spatial indices indicates a control volume face.
The most important feature of this algorithm is that it recognizes and benefits from the

characteristic nature of advection. The values of the advected variable which most heavily influence
the unknown valueC�i; n � 1� are those at time leveln which are close to the foot of the
characteristic back-tracked fromC�i; n � 1�. This is the bedrock of the DISCUS method. Only by
using information from this part of the computational plane can a highly accurate solution be
obtained. The ability of this scheme to work at any Courant number should now be clear, since the
only effect that the Courant number has is to alter the slope of the characteristic in the third step of the
procedure, i.e. to determine the number of cells between theith cell and the core cell. The numerical
algorithm is unconditionally stable because the fractional Courant number is always less than one.

Although it may not be obvious, the algorithm is essentially the same as the FBMMOC method
described by Roache.2 Equation (15) appears more compact than the expressions given by Roache for
two reasons. Firstly, Roache does not give his algorithm in as condensed a form as possible. In
contrast with equation (11) of Roache’s paper, equation (15) recognizes that contributions to the
conservation of the advected variable from cells located between the core cell and theith cell cancel
when the expressions for the time-integrated fluxes for both face values are substituted into the
control volume discretization. Indeed, some of the terms which cancel reflect the fact that when the
Courant number is high, part of the advected profile will pass through both faces of the control
volume during a time step.

Secondly, Roache allows for a spatially varying velocity field while equation (15) does not,
although it is easily generalized to do so by using a local fractional Courant number for each control
volume face2,4 (note, however, that the flux limiter may need refining). In a similar way the
recognition of the upstream movement of the core cell implied by the reduced grid point index inall
the terms on the RHS of equation (15) automatically ensures that the algorithm is consistent with
Roache’s ‘correct’ as opposed to his ‘incorrect’ or ‘naive’ method. His ‘naive’ method is equivalent
to the first term on the RHS of equation (15) beingC�i; n�, which as he points out leads to erroneous
results when the Courant number is greater than one.

NUMERICAL EXPERIMENTS

A series of numerical experiments were undertaken with DISCUS and ULTIMATE DISCUS in order
to enumerate their accuracy and to illustrate the effect of their errors on spatial profiles ofC. Each
experiment consisted of simulating the one-dimensional pure advection of a Gaussian profile of the
advected variable by a uniform velocity field. Simulations were undertaken for Courant numberN1
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between 0�1 and 22�5 and for two spatial resolutionsN3 (7�76, 15�52) defined as4�=�x, wheres is
the standard deviation of the Gaussian. The smallerN3-value is equivalent to a standard deviation of
1�94�x as used by Leonard and Niknafs.5 The velocity and distance travelled by the profile were the
same in each experiment (1 m s71 and 36 km respectively). The Courant number was varied by
changing the time step and hence the number of time steps required to advect the profile the required
distance varied with Courant number.N3 was varied by changing the standard deviation of the initial
profile. A number of simple error norms were evaluated by comparing the computed profile at the end
of the calculations with the analytical solution. Clearly, in the absence of physical diffusion the
Gaussian profile undergoes pure translation with no change in shape (or variance). Note that other
profile shapes, e.g. rectangular, sine-squared or semielliptical functions, would be sterner tests for the
algorithms.

DISCUSSION OF RESULTS

Figures 4and5 show the percentage error in the peak value of the advected Gaussian at the end of the
experiment as a function of Courant number and spatial resolution for both DISCUS and ULTIMATE
DISCUS. Figure 4 shows values at or close to Courant numbers of 0�5, 1�5, 2�5, . . . , 9�5, 10�5, 16�5
and 22�5 and illustrates how the accuracy of both schemes tends to increase with increasing Courant
number and with increasing spatial resolution. Clearly, most of the improvement in accuracy (at
constantN3) occurs for Courant numbers increasing up to 10, beyond which the accuracy tends to
remain approximately constant. It is also evident that DISCUS is always more accurate than
ULTIMATE DISCUS. Figure 4 gives a superficial view of the variation in accuracy with Courant
number, however, as illustrated in Figure 5, which shows some results at a greater Courant number
resolution. Here, for Courant numbers between one and three the accuracy of both schemes is seen to
vary in a systematic way between integer values of Courant number, with a local minimum of
accuracy (maximum of error) occurring close to, but not necessarily at, the mid-range value. Clearly,
the analytical solution is simulated exactly at integer values of Courant number, as expected. There is
no reason to doubt that similar patterns exist for all integer–integer ranges of Courant number. The

Figure 4. Accuracy of numerical schemes as a function of Courant number
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obvious exception is between zero and one, where accuracy increases monotonically with increasing
Courant number. Again it is clear that DISCUS is always more accurate than ULTIMATE DISCUS.

These accuracy plots require careful interpretation. A von Neumann stability analysis of the
QUICKEST scheme for pure advection3 reveals that for a constant spatial resolution its amplification
factor varies with Courant number in the range from zero to one in a symmetrical manner, with a
minimum occurring when the Courant number is 0�5 and unity occurring when the Courant number is
zero or one. Now the amplification factor is a measure of the error per time step of the scheme, so that
if the QUICKEST scheme were run at Courant numbers of 0�2 and 0�8 for the same number of time
steps, we would expect exactly the same values for any error norms evaluated (and, indeed, this is
what we find). The results reported here appear not to show this, however, only because of the way in
which the Courant number was varied, which involved increasing the time step and necessarily
decreasing the number of time steps required to advect the test profile the same distance in each
experiment.

For example, a Courant number of 0�2 utilized 900 time steps of length 40 s, while a Courant
number of 0�8 utilized 200 time steps of length 18 s. Hence the total error at the end of the two
simulations ought not to be the same: the error in the simulation using the greatest number of time
steps is expected to be greater and this is borne out by Figure 5. The accuracy of the DISCUS scheme
(which uses the QUICKEST algorithm at all Courant numbers) for a constant spatial resolution is
wholly controlled by the fractional Courant numbera, so that the error per time step is the same not
only for Courant numbers of 0�2 and 0�8 but also for 1�2, 1�8, 2�2, 2�8, etc.

This argument explains the variation in percentage peak error illustrated by the results. In
particular it explains: the monotonically decreasing accuracy as the Courant number reduces from
one to zero; why in each other integer–integer Courant number range the accuracy distribution is
slightly skewed towards the lower end of the range rather than being symmetrical; and why there is a
general increase in accuracy as the Courant number increases as shown in Figure 4. The behaviour of
the accuracy of the ULTIMATE DISCUS scheme mirrors that of DISCUS closely, because only
occasionally does the flux limiter require the face value obtained using QUICKEST to be modified.

These results also show how important it is for modellers to known what each other mean by
accuracy. Clearly, there is a big difference between accuracy per calculated time step and accuracy

Figure 5. Detail of variation in accuracy of numerical schemes for Courant numbers between zero and three
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achieved over a specified advection distance. Similarly, quoting numerically obtained accuracy as a
function of Courant number is not enough—details of the manner in which the Courant number was
varied are needed for the results to be properly interpreted.

Figures 4 and 5 also show the improved accuracy of both schemes as the spatial resolution is
increased. Significant reductions in the percentage peak error are achieved at all non-integer Courant
numbers by doubling the spatial resolution. Clearly, further improvements in accuracy are expected at

Figure 6(a). Analytical and numerical solutions; Courant numberN1�0�5, spatial resolutionN3� 7�76

Figure 6(b). Analytical and numerical solutions; Courant numberN1�2�5, spatial resolutionN3�7�76
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even higher spatial resolutions. Other simple accuracy norms such as a coefficient of determination1

yielded similar trends to those illustrated in Figures 4 and 5.
Figures 6(a)–6(d)shows spatial profiles ofC from both schemes at the end of the simulation for

Courant numbers of 0�5, 2�5, 7�5 and 22�5 respectively. The analytical solution is also shown. The
figures illustrate important aspects of the simulations and show the nature of the errors in them, the
main features being: the computed profiles are symmetrical; the calculated peak value is too low in

Figure 6(c). Analytical and numerical solutions; Courant numberN1�7�5, spatial resolutionN3� 7�76

Figure 6(d). Analytical and numerical solutions; Courant numberN1�22�5, spatial resolutionN3�7�76
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both schemes, with the error being greater with ULTIMATE DISCUS as indicated earlier; DISCUS
creates oscillatory errors on the front and leading edges while ULTIMATE DISCUS produces
monotonic profiles; and both schemes artificially widen the profile to a similar extent. The generally
increasing accuracy of both schemes is demonstrated by comparing the visual size of these
discrepancies across the four Courant numbers shown. It is noticeable that a significant error in the
peak value remains in both schemes even when they appear to fit the rest of the profile. It is this so-
called clipping error which the adaptive higher-order form of DISCUS or ULTIMATE DISCUS
would remove.

The profile widening and accompanying peak error are caused by numerical diffusion in the
QUICKEST algorithm. Clearly, the major side-effect of ULTIMATE DISCUS is the introduction of
additional suppression of the peak with only a marginal effect on the profile width. This is the price of
eliminating the wiggles and constraining the calculations to remove obviously non-physical modes
while retaining mass conservation. The profile widening can be quantified by evaluating the spatial
resolution of the profiles at the end of the simulations,N3 (final). Such data from the ULTIMATE
DISCUS simulations are shown inFigure 7, which is a similar type of plot to Figure 4. This figure
shows similar trends to those of the peak error norm discussed earlier. Similar data from the DISCUS
simulations are not shown, because allN3-values are close to that of the initial profile. This does not
imply that profile widening does not occur (see Figure 6); however, the negative parts of the profiles
reduce the calculated variance in such a way that the total variance from all runs is always within
about 1% of the initial value. Clearly, any error norm based on a simple calculation of variance is not
a good discriminator of profile widening if wiggles are present.

Finally, we would stress that both schemes offer significant advantages in practical modelling
exercises over existing schemes because they allow the use of larger time steps and hence offer the
prospect of reduced computing time. Since the accuracy per time step is only dependent on the
fractional Courant number and spatial resolution, the use of large time steps actually increases the
basic accuracy of the scheme by reducing the number of spatial interpolation operations required to
advect a profile over a fixed distance. Readers should be aware that recourse to traditional means of
utilizing large time steps, i.e. the use of Eulerian implicit finite difference or finite element schemes,

Figure 7. Spatial resolution of simulated profile at end of simulation,N3 (final), as a function of Courant number
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is counter-productive and should be avoided1 because their accuracy decreases with increasing
Courant number greater than one.

CONCLUSIONS

This paper has described the ULTIMATE DISCUS algorithm for simulating advection. The
philosophy of the algorithm is similar to Roache’s FBMMOC method,2 except that it uses the
ULTIMATE QUICKEST scheme of Leonard4 in place of the MUSCL scheme of van Leer.6 The
scheme offers the promise of stability, mass conservation, monotonic profiles and high accuracy at
large time steps. The semi-Lagrangian nature of this scheme, which acknowledges the physical nature
of advection, is the key to its success, because, for a fixed advection distance, larger time steps imply
fewer spatial interpolations and hence the accuracy improves. In terms of simple error norms the
original DISCUS scheme (which uses the QUICKEST algorithm) is generally more accurate than the
new ULTIMATE DISCUS scheme (which uses the ULTIMATE QUICKEST algorithm). However,
the monotonic profiles ensured by ULTIMATE DISCUS are more comforting physically, albeit at the
cost of a few per cent loss in overall accuracy. Both schemes give more accurate solutions as the
spatial resolution increases, as would be expected. If the computational cost of increasing spatial
resolution in order to increase accuracy is too high, the use of the adaptive higher-order form of the
ULTIMATE QUICKEST algorithm4 within the DISCUS framework appears attractive, since the
more costly calculations would only be required at relatively few grid points. A simpler remedy,
however, would be to increase the time step! Indeed, this latter course is the first step current users of
QUICKEST or ULTIMATE QUICKEST should follow in order to immediately increase the accuracy
of their simulations. The second step is to locate the core cell using the (new) Courant number, i.e. to
use equation (15) in place of the conventional control volume discretization.
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